CALCULATION METHODOLOGY FOR CARBON DIOXIDE EMISSIONS

The value of the Carbon Dioxide (CO_2) emission reductions has been calculated and included in the benefits attributable to the proposed project. The CO_2 emission reductions are based on the travel distance savings resulting from the bypass and fleet fuel consumption.

The travel speed along the existing route and the related fuel consumption were calculated and compared to the anticipated speeds on the proposed route and the related consumption. The basic assumptions relate to the calculated and observed speeds, the number of traffic signals negotiated, known travel patterns, and common termini.

Calculations were performed to determine fuel consumption savings for the partial use of the proposed bypass and for the full use of the proposed bypass. Known travel patterns were the basis for determining the percentage of trucks using the full length of the proposed bypass versus trucks using only a portion of the proposed facility. Approximately ten percent (10%) of the diverted commercial vehicles are expected to use a portion of the proposed bypass and then continue their travel to the west. Another five percent (5%) are anticipated to use a portion of the bypass to access points along the bypass or to the region west of the existing route. The final 85% are likely to have destinations south of Bella Vista and will be likely to use the entire route.

The fuel consumption rates and related emission rates are shown in y g'vcdrg'(sustainability calculation.pdf)'qp'r ci g'4. The weighted CO_2 reductions were calculated as 9.53 tons per day for every 1,000 trucks diverted from the existing facility to the proposed bypass.

Traffic estimates developed for the number of commercial vehicle toll transactions over the life of the facility were used to determine the commercial vehicle diversion to the new route for each year. These figures were summed to determine total commercial traffic diverted over the life of the project. The emission savings of 9.53 tons per day/1000 vehicles was applied to determine the tons per day of savings.

TIGER guidance indicates the value of the CO_2 emissions as \$33 (2011 value) per metric ton of reductions based on the Final Regulatory Impact Analysis of the National Highway Traffic Safety Administration's rulemaking on Corporate Average Fuel Economy for MY 2011 Passenger Cars adn Light Trucks. This value was reduced by the given 2.4% for the annual growth of the social costs of carbon. When adjusted for growth (reduced because earlier in time) this figure became \$31.44 (2009 value). This figure was applied to the total tons per day calculated to obtain a current year daily savings which was then multiplied by 365 days/year to determine the current year annual emission reduction savings. These calculations can be seen on 'y g'xcdrg''qp''(sustainability value for BVB.pdf)'r ci g'5.

The total current year value used for the emission reduction is \$4.53 million over the next twenty years.

CARBON DIOXIDE REDUCTION CALCULATION FOR 1,000 TRUCKS ALONG BELLA VISTA BYPASS

		Partial	Use of the By	ypass			
Category	Current Miles No Stoplights	Current Miles With Stoplights	Current Total Miles	Future Miles on ByPass	Future Miles NOT on ByPass	Future Total Miles	Diff
Miles	12.10	16.50	28.60	12.76	12.10	24.86	(3.74)
MPG	6.8	3.6		6.8	5		
Gallons Consumed	1.78	4.58	6.36	1.88	2.42	4.30	(2.07)

		Full L	Jse of the Byp	ass			
	Current Miles No	Current Miles	Current Total	Future Miles on	Future Miles	Future	
Category	Stoplights	With Stoplights	Miles	ByPass	NOT on ByPass	Total Miles	Diff
Miles	4.80	11.20	16.00	19.27	-	19.27	3.27
MPG	6.1	3.6		6.1	3.6		
Gallons Consumed	0.79	3.11	3.90	3.16	-	3.16	(0.74)

weekly trips	
286	
daily trips	

		Assume 100	Gallons sav CO2 tpd sav
¥е	10% are 85% hay 5% hay 100% pei	0 trucks	ed
ighted average:	bound for west of bypa ve destinations south of ve destinations along th cent	on Bypass:	Partial West (2,066.27) (21.00)
(2.10) tpd CO2 reductio (6.38) tpd CO2 reductio (1.05) tpd CO2 reductio (9.53) total weighted DA	ass - using a portion the bypass e bypass		Full Use o (738.98 (7.51
ns (partial west) ns using the entire t <u>ns (partial east)</u> ILY TPD CO2 redu	(2,066.27) (738.98) (2,066.27)	gallons saved	f the Bypass))
bypass ctions for 1,000 trucks on bypass	(21.00) (7.51) (21.00)	CO2 tpd saved	

109.58

767 daily trips

weekly trips

(226.41) daily gallons saved

40.91

(30.23) daily gallons saved

SUSTAINABILITY BENEFITS for BELLA VISTA BYPASS BASED ON

PROJECTED TRUCK TRANSACTIONS AND ESTIMATED CO2 SAVINGS

 \$31.44
 2009 value to measure the global benefits of reduction of US CO2 emissions.

 This is based on the estimate of \$33 per metric ton of carbon cide on page VII-45 of the Final Regulatory Impact Analysis of the National Highway Traffic Safety Administration's rulemaking on Corporate Average Fuel Economy for MY2011 Passenger Cars and Light Trucks. This value was reduced by the given 2.4% for the annual growth of the social costs of carbon.

 \$33.00
 2.4% annual growth thereafter for the Social Cost of Carbon

		2050	2049	2048	2047	2046	2045	2044	2043	2042	2041	2040	2039	2038	2037	2036	2035	2034	2033	2032	2031	2030	2029	2028	2027	2026	2025	2024	2023	2022	2021	2020	2019	2018	2017	2016	2015	2014	2013		AADT	Bella Vista
		6,800	6,700	6,700	6,600	6,500	6,500	6,400	6,100	6,100	6,000	5,900	5,900	5,800	5,800	5,700	5,700	5,600	5,600	5,500	5,500	5,400	5,300	5,200	5,200	5,100	5,000	4,900	4,800	4,700	4,700	4,600	4,500	4,400	3,900	3,600	2,900	2,100	200	P		Bypass N
		200	200	200	200	200	200	200	200	200	200	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	0	5		lorthbound
		600	600	600	600	600	600	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	400	400	400	400	400	400	400	300	200	0	독		
		7,600	7,500	7,500	7,400	7,300	7,300	7,100	6,800	6,800	6,700	6,500	6,500	6,400	6,400	6,300	6,300	6,200	6,200	6,100	6,100	6,000	5,900	5,800	5,800	5,700	5,600	5,500	5,400	5,200	5,200	5,100	5,000	4,900	4,400	4,100	3,300	2,400	200	Total		
		2050	2049	2048	2047	2046	2045	2044	2043	2042	2041	2040	2039	2038	2037	2036	2035	2034	2033	2032	2031	2030	2029	2028	2027	2026	2025	2024	2023	2022	2021	2020	2019	2018	2017	2016	2015	2014	2013		AADT	Bella Vista
		6,800	6,700	6,700	6,600	6,500	6,400	6,400	6,300	6,200	6,200	6,100	6,100	6,000	5,900	5,900	5,800	5,800	5,700	5,700	5,600	5,600	5,500	5,400	5,300	5,200	5,200	5,100	5,000	4,900	4,800	4,700	4,300	4,100	3,600	3,300	2,700	2,100	200	PV	1	Bypass S
		100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	0	5		outhbound
		500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	400	400	400	400	400	400	400	400	400	400	400	400	400	400	300	300	200	0	耳		
		7,400	7,300	7,300	7,200	7,100	7,000	7,000	6,900	6,800	6,800	6,700	6,700	6,600	6,500	6,500	6,400	6,400	6,300	6,300	6,200	6,100	6,000	5,900	5,800	5,700	5,700	5,600	5,500	5,400	5,300	5,200	4,800	4,600	4,100	3,700	3,100	2,400	200	Total		
		2050	2049	2048	2047	2046	2045	2044	2043	2042	2041	2040	2039	2038	2037	2036	2035	2034	2033	2032	2031	2030	2029	2028	2027	2026	2025	2024	2023	2022	2021	2020	2019	2018	2017	2016	2015	2014	2013		AADT	Bella Vista
		6,800	6,700	6,700	6,600	6,500	6,400	6,400	6,300	6,200	6,200	6,100	6,100	6,000	5,900	5,900	5,800	5,800	5,700	5,700	5,600	5,600	5,500	5,400	5,300	5,200	5,200	5,100	5,000	4,900	4,800	4,700	4,300	4,100	3,600	3,300	2,700	2,100	200	P	:	Bypass T
		100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	0	5		OTAL
		500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	400	400	400	400	400	400	400	400	400	400	400	400	400	400	300	300	200	0	독		
present - z	cumula	15,000	14,800	14,800	14,600	14,400	14,300	14,100	13,700	13,600	13,500	13,200	13,200	13,000	12,900	12,800	12,700	12,600	12,500	12,400	12,300	12,100	11,900	11,700	11,600	11,400	11,300	11,100	10,900	10,600	10,500	10,300	9,800	9,500	8,500	7,800	6,400	4,800	400	Total		
2030	tive truck traffic	2050	2049	2048	2047	2046	2045	2044	2043	2042	2041	2040	2039	2038	2037	2036	2035	2034	2033	2032	2031	2030	2029	2028	2027	2026	2025	2024	2023	2022	2021	2020	2019	2018	2017	2016	2015	2014	2013	Using AHTD 209		
(395.47) 9.53 tpd	41480 AADT	3000	2960	2960	2920	2880	2860	2820	2740	2720	2700	2640	2640	2600	2580	2560	2540	2520	2500	2480	2460	2420	2380	2340	2320	2280	2260	2220	2180	2120	2100	2060	1960	1900	1700	1560	1280	960	,	% for trucking		

2009 value of tpd reduction \$ 31.44 365 days/year Total value of CO2 reductions using global impact over the life of the project (2009) \$ (4,537,522.40)

is from Sustainabiliy calculation - BVB D2 reduction / 1000 trucks

CALCULATION METHODOLOGY FOR VOLATILE ORGANIC COMPOUNDS and NITROGEN OXIDE

The amount of the Volatile Organic Compounds (VOCs) and Nitrogen Oxide (NOx) emission reductions has been calculated. There is not a monetary value associated with these emissions.

VOC and NOx emissions rates were calculated using MOBILE6.0 and all default data to determine a comparison between the existing and proposed routes and the relative travel speeds. The MOBILE6.0 program produces VOC and NOx emission rates by speed and vehicle type for non-ramp freeway facilities and arterials. Existing travel speeds were calculated based on the Travel Time Study performed in July, 2009.

The spreadsheet {hyperlink to VOX_NOx_calculation.pdf} displays the length of each segment, the average daily traffic along the segment, and the truck percentage. Emission rates for VCs and NOx were provided from the MOBILE6.0 output files for both passenger vehicles (PV) and commercial vehicles (HDDV).

The emissions for each segment were calculated and then summed for total emissions of that option. The two options compared were the Do-Nothing scenario with all of the existing traffic remaining on the facility. The Build scenario used the same traffic diversion as the other analyses.

The total emissions for the No-Build and the Build (bypass) scenario were compared to determine the following.

	POLL	UTANT
Scenario	Volatile Organic Compounds	Nitrogen Oxide
Existing (No-Build)	68.5 tons/year	45.4 tons/year
Bella Vista Bypass	65.0 tons/year	47.4 tons/year
Reduction/(Increase)	3.5 tons/year	(2.0) tons/year

Conversion Factor (grams to tons)		ton = 2000 lbs. 2	.2 lbs = 1 kg	1 kg = 1000 gr	$1 \text{ ton} = 1.1 \times 10^{-6} \text{ gr}$	ram	0.0000011	1606.060606	
				Existing Highway	71 - No Build				
Truck and PV Segregated Segment	Length	ADT	2013 truck %	avg speed	Emission Fa	actors - PV NO _x	Emission Facto	ors - HDDV NOx *	Daily Emission VOC
	_	161000	040	000	C70 0	000 0 ,	0 057	0 500	0 0005
US /1B Highway 340 State line	4.9 2.1	46100.0 25200.0	0.12 0.29	38 48	0.373 0.336	0.209	0.257	0.522	0.0935
	- I			Ĵ (0.000		0.000) ()	0.040
State Line Missouri 90	4.4	25000.0	0.25	4/	0.339	0.214	0.203	0.515	0.0421
Missouri 90 H St (Pineville)	4.9	17200.0	0.25	54	0.323	0.22	0.177	0.683	0.0305
71R - 79	0.0								
72 - 72	0.0								
72 - CP 34									
CR 34 - Route H	0.0								
Route H - Pineville Bypass	0.0								
					* reduce speed by	10 MPH for emissi	ons	1	
						oongoonon		Tons/Year	68.47
conversion grams/mile> Tons/day		_	ton = 907184.74	grams		907184.74			
Conversion Factor (grams to tons)		_	ton = 2000 lbs.		2.2 lbs = 1kg	1kg = 1000 gr	1 ton = 1.1x10-6 grai	п	0.0000011
		l	l	l	l	l			
					Existing - with Bypa	ass in Place			
	•			-					
Segment	Length	ADT	truck %	avg speed	VOC	NOx	VOC	NOX	VOC
US 71B Highway 340	4.9	41500.0	0.14	44	0.349	0.212	0.177	0.55	0.0786
Highway 340 State line	2.1	21000.0	0.14	54	0.323	0.22	0.158	0.683	0.0164
State Line Missouri 90	4.4	20900.0	0.14	53	0.324	0.219	0.159	0.667	0.0331
Missouri 90 H St (Pineville)	4.9	13300.0	0.14	60	0.313	0.224	0.153	0.828	0.0226
LIS 71B Highway 72	л 7	4600.0	06.0	л л	705 0	866 U	0 153	1 015	0000 0
	0 0				0.001				
Highway 72 Highway 72	3.0	4400.0	0.20	65	0.307	0.228	0.153	1.015	0.0046
Highway 72 CR 34	2.4	4200.0	0.20	65	0.307	0.228	0.153	1.015	0.0035
CR 34 Route 90	4.9	4100.0	0.20	65	0.307	0.228	0.153	1.015	0.0069
Route 90 Highway 71 - p'v	il 2.4	3900.0	0.20	65	0.307	0.228	0.153	1.015	0.0033

0.307 0.307 0.307 0.307 0.307 Difference in Emissions 0.228 0.228 0.228 0.228 0.228 0.228 0.153 0.153 0.153 0.153 0.153 No-Build Build Emission Reduction (Increase) Tons/Day Tons/Year 1.015 1.015 1.015 1.015 1.015 0.0090 0.0046 0.0035 0.0069 0.0033 0.1780 64.96

Highway 72 Highway 72 CR 34 Route 90 Highway 71 - p'vil

5.7 3.0 2.4 4.9 2.4 18.4

conversion grams/mile --> Tons/day

1 ton = 907184.74 grams

907184.74

missions	NOx	VMT Source	Speed Source	
0.0935 0.0214	0.0547 0.0169	unit	travel time study travel time study	
0.0421 0.0305	0.0293 0.0235	unit unit	travel time study travel time study	
0.1876 68.47	0.1243 45.35			
000011	909090.9091	l		
missions	NOX	VMT Source	Speed Source	
0.0786	0.0505	unit	travel time study	
0.0164 0.0331 0.0226	0.0130 0.0241 0.0176	unit unit	travel time study travel time study	
0.0090 0.0046 0.0035 0.0069 0.0033	0.0076 0.0043 0.0035 0.0060 0.0032			
0.1780 64.96	0.1299 47.41			
68.47 (64.96)	45.35 (47.41)			
3.52 5%	(2.06) -5%			

5