CALCULATION METHODOLOGY FOR CARBON DIOXIDE EMISSIONS

The value of the Carbon Dioxide $\left(\mathrm{CO}_{2}\right)$ emission reductions has been calculated and included in the benefits attributable to the proposed project. The CO_{2} emission reductions are based on the travel distance savings resulting from the bypass and fleet fuel consumption.

The travel speed along the existing route and the related fuel consumption were calculated and compared to the anticipated speeds on the proposed route and the related consumption. The basic assumptions relate to the calculated and observed speeds, the number of traffic signals negotiated, known travel patterns, and common termini.

Calculations were performed to determine fuel consumption savings for the partial use of the proposed bypass and for the full use of the proposed bypass. Known travel patterns were the basis for determining the percentage of trucks using the full length of the proposed bypass versus trucks using only a portion of the proposed facility. Approximately ten percent (10\%) of the diverted commercial vehicles are expected to use a portion of the proposed bypass and then continue their travel to the west. Another five percent (5%) are anticipated to use a portion of the bypass to access points along the bypass or to the region west of the existing route. The final 85% are likely to have destinations south of Bella Vista and will be likely to use the entire route.

The fuel consumption rates and related emission rates are shown in WHYNEOH(sustainability calculation.pdf) $\mathbb{R Q S D} H D$. The weighted CO_{2} reductions were calculated as 9.53 tons per day for every 1,000 trucks diverted from the existing facility to the proposed bypass.

Traffic estimates developed for the number of commercial vehicle toll transactions over the life of the facility were used to determine the commercial vehicle diversion to the new route for each year. These figures were summed to determine total commercial traffic diverted over the life of the project. The emission savings of 9.53 tons per day/ 1000 vehicles was applied to determine the tons per day of savings.

TIGER guidance indicates the value of the CO_{2} emissions as $\$ 33$ (2011 value) per metric ton of reductions based on the Final Regulatory Impact Analysis of the National Highway Traffic Safety Administration's rulemaking on Corporate Average Fuel Economy for MY 2011 Passenger Cars adn Light Trucks. This value was reduced by the given 2.4% for the annual growth of the social costs of carbon. When adjusted for growth (reduced because earlier in time) this figure became $\$ 31.44$ (2009 value). This figure was applied to the total tons per day calculated to obtain a current year daily savings which was then multiplied by 365 days/year to determine the current year annual emission reduction savings. These calculations can be seen on\WHWEOMRQ(sustainability value for BVB.pdf)CSD HI .

The total current year value used for the emission reduction is $\$ 4.53$ million over the next twenty years.

рәлеs suo॥еб К！！ер（દて＂0ع）

（ $\dagger<{ }^{\circ} 0$ ）	$9 \vdash^{\circ} \mathrm{E}$	－	91• ε	$06 \cdot \varepsilon$	ト・¢	6L＇0	paunsuoj suolleg
		$9^{\circ} \mathrm{E}$	เ．9		$9 \cdot \varepsilon$	1＇9	פdW
$\angle て ゙ \varepsilon$	Lで 6 ト	－	くで61	00．91	0でトト	08＇t	sol！w
H！	SO！！W IEtol annın＿				stub！｜dols 4！！M 		Кıобәə ${ }^{\text {a }}$
ssedKg ə૫ł 〕0 əsП IIn」							

（ 20 ＇Z）	$0 \varepsilon^{\prime} \downarrow$	こヵ「て	88°	$9 \varepsilon^{\circ} 9$	$8 S^{\prime} \dagger$	8 ${ }^{\circ}$	pəunsuos suol｜e⿹
		G	$8 \cdot 9$		$9 \cdot \varepsilon$	$8 \cdot 9$	VdW
（ \dagger L \mathcal{L} ）	$98^{*} \downarrow$ ¢	01＇Z	92＇そ1	09．82	09．91	O1＇て1	sə！！
H！	Sə！！W IEłO』 aının－	ssedig uo ION solln әan！n－	ssed＾g uo soun adn！n	sə！！ Ielol luaduns	sty6！！｜dots 4！！M solun luatuno		Киобәıеэ
ssedKg əцł j0 əs＠le！tıed							

CALCULATION METHODOLOGY FOR VOLATILE ORGANIC COMPOUNDS and NITROGEN OXIDE

The amount of the Volatile Organic Compounds (VOCs) and Nitrogen Oxide (NOx) emission reductions has been calculated. There is not a monetary value associated with these emissions.

VOC and NOx emissions rates were calculated using MOBILE6.0 and all default data to determine a comparison between the existing and proposed routes and the relative travel speeds. The MOBILE6.0 program produces VOC and NOx emission rates by speed and vehicle type for non-ramp freeway facilities and arterials. Existing travel speeds were calculated based on the Travel Time Study performed in July, 2009.

The spreadsheet \{hyperlink to VOX_NOx_calculation.pdf\} displays the length of each segment, the average daily traffic along the segment, and the truck percentage. Emission rates for VCs and NOx were provided from the MOBILE6.0 output files for both passenger vehicles (PV) and commercial vehicles (HDDV).

The emissions for each segment were calculated and then summed for total emissions of that option. The two options compared were the Do-Nothing scenario with all of the existing traffic remaining on the facility. The Build scenario used the same traffic diversion as the other analyses.

The total emissions for the No-Build and the Build (bypass) scenario were compared to determine the following.

	POLLUTANT	
Scenario	Volatile Organic Compounds	Nitrogen Oxide
Existing (No-Build)	68.5 tons/year	45.4 tons/year
Bella Vista Bypass	65.0 tons/year	47.4 tons/year
Reduction/(Increase)	3.5 tons/year	(2.0) tons/year

