Safety Surface Strategies

The application of a safety pavement wearing course is proposed as a major safety element for this project. Placement of the wearing surface is commonly used in Europe to improve visibility in wet weather (due to truck and car spray), improve wet weather skid resistance, and reduce the potential for hydroplaning. The use of this surface in the United States has been increasing in the last ten years.

The Safety Surface Treatment Process has the capability of placing a thin lift (1/2 inch $-3 / 4$ inch) of gap-graded hot mix wearing course over a polymer-modified tack coat/membrane using only one piece of equipment. This specialized equipment/paver can evenly distribute the polymer-modified membrane immediately in front of the paver augers and apply/level the wearing course concurrently at a rate of 30 to 90 feet per minute. The paver incorporates a hopper to accept hot mix from trucks, a storage tank to hold the polymer-modified tack coat/membrane, emulsion spray bar, heated vibratory screed, auger system, and electronic controls for surface tolerance.

Hot mix asphalt is delivered and laid at the specified lift thickness within seconds of the polymer-modified membrane application. Because the polymer-modified emulsion is applied almost simultaneously with the hot mix, the emulsion rate can be increased. The typical application range for the polymer-modified membrane is 0.20 ± 0.05 gallons per square yard. The thicker emulsion tends to seals the entire surface, including small cracks, and promotes bonding to the existing surface. The hot mix is smoothed over the full lane width in one pass using a heated screed to ensure an even mat. Lift thicknesses of $1 / 2$ - inch to 1 inch are typical.

Compaction of the wearing course is carried out using multiple passes of a steel wheel roller of sufficient weight to properly seat the aggregate without crushing it. Compaction is easily attainable since this gap-graded mix seats quickly. Generally, no vibration is allowed except at the transverse joints.

Another advantage in using open-graded mixes is to the ability to reduce pavement tire friction which is a major component of highway noise. The NCHRP has reported the open-graded mixes, such as the safety surface proposed here, has the greatest potential for noise reduction for passby noise. Reductions when compared to dense-graded asphalt ranged from 1 to $9 \mathrm{~dB}(\mathrm{~A})$. However, the noise reductions seem to decline with surface age and in approximately 5 to 7 years, the noise benefit diminishes, although the surface is still quieter than most PCC pavements. Preventative maintenance is planned to reduce plugging, freeze/thaw impacts, and reduce effectiveness of deicing agents. These treatments are indented to increase the noise reduction performance life of this surface until its planned replacement date of ten years
(2022). For further information see the report at: http://books.google.com/books?id=wt3Pchyc0FAC\&pg=PP1\&dq=NCHRP+Synth esis+268\#v=onepage\&q=NCHRP\%20Synthesis\%20268\&f=false

The AHTD has considerable experience with the use of this safety wearing course. To date, AHTD has completed 16 jobs, for a total of 130.04 miles at a cost of $\$ 12.6$ Million. See the table on the following page. This table shows the cost for each job that was completed in the last four years; all estimates for the safety wearing course for the proposed bypass were based on these costs.

	ち0＇0¢							ع6＇と9t＇と6S＇てI\＄					$7 \forall 101$
u mouy 100	\＆t＇8	†L＇6	โ $\varepsilon^{\prime} \tau$	$0 \angle 0$	29	S	6	00＇ャST＇L08\＄	Et＇8	sцıuou IT	8002－0T	1 1səM－әu！${ }^{\text {＇OO U0！ıew }}$	s060ts
unouy tou	0でも	†L＇9	ャc＇z	OSO	29	8	6	00＇8L6＇8LV\＄	8＇G	s．eәイス	L002－60		t060ts
umouy tou	09＇โ	6＇ε โ	ع＇ZI	OSO	29	8	6	00＇8L6＇8Lt\＄	8＇9	s．ee入人	L002－60		t060ts
． $8 / \mathrm{S}$	10＇ε	68＇0T	$88^{\circ} \mathrm{L}$	090	79	8 S	8	00＇\＆St＇$¢$ S9\＄	T0＇ε	sцІuou 8 ィеаК τ	8002－t0	L＇KMH－ssedıəлO पyydn	t080ts
． $81 / \mathrm{S}$	LO＇L	Lで8	て＇IT	OT0	09	\＆G	8	00＇โ66＇9T9\＄	L0＇L	sцłuow ot rea τ	L002－ธT		2080ts
．．も／\＆	0t＇s	6.92	8＇tz	0＜O	TLE	$\downarrow \tau$	L	00＇TLL＇8St＇T\＄	てで9		8002－80		6020ts
．．t／¢	9L＇8	6.02	†T＇ZT	$0 \angle 0$	TLE	$\downarrow \tau$	L	00＇TLL＇8St＇T\＄	てt＇9T	цдиош $\frac{1}{\text { rea }}$ ¢	8002－80		6020ts
．．t／E	$09^{\prime} \mathrm{Z}$	$8 \chi^{\prime} \mathrm{G}$	$8 L^{\prime} \mathrm{Z}$	OLO	TLE	$\dagger \tau$	L	00＇TLL＇8St＇T\＄	てで9¢	цдиош τ ィеәК τ	800Z－80		6020ts
．．7／\＆	$06{ }^{\text {t }}$	¢8＇sz	56．02	OSO	8	0T	L	00＇9st＇t88\＄	$6{ }^{\prime}$	SपІиош 6 леәК	L00Z－てT	1SəM－TS． M M $^{\text {H }}$	9020TS
．．\downarrow / ε	Z8＇t	て8＇t	0	00T	8	$\varepsilon \tau$	L	00＇ZTL＇969\＄	28＇t		L00Z－01	L6＇KMH－96L＇KMH	toLOTS
． $\mathrm{\nabla} / \mathrm{\varepsilon}$	カて＇七	カて＇七	0	060	8	L	L	00＇ZTL＇969\＄	28＇t		L002－0T	L6＇KMH－96L ${ }^{\text {＇}}$ M ${ }^{\text {／}}$	tolots
．．も／¢	L9＇ε	L9＇ε	0	080	8	02	L	00＇ZTL＇969\＄	て8＇t		L00Z－0T	L6＇KMH－96L＇KMH	t020ts
．．\downarrow / ε	عて＇て	$66^{\circ} \downarrow \tau$	9L＇ZT	080	L	ZS	L	00＇8tt゙くto＇t\＄	عて＇乙		L00Z－0T	иәрıеәя－ $29 \varepsilon^{\prime}$ КмН	TOLOTS
．．t／¢	ャع＇L	ャ0＇9	L＇8	$0 \vdash 0$	62	ZS	L	00＇8カヷくカ0＇t\＄	\＆て＇て		L002－0T	иәр．еәд－ 298 ＇КмН	tolots
． Z / I	OT＇ε	t＇8	$\varepsilon ' G$	080	OT	09	9	8t＇t99＇089\＄	T＇ε	sцıuour IT	8002－0T		8090TS
и м Moux tou	¢s＇9	โ¢＇$\varepsilon \tau$	96.9	080	$\varepsilon 9$	9 S	OT	00＇000＇002\＄	Sc＇9	s．reaイs	†002－60		T6G00t
． $8 / \mathrm{S}$	عโ＇8	$6 \downarrow$＇ャ	$9 \varepsilon^{\prime} 9$	0¢T	L	SL	8	00＇Itナ＇LSS\＄	ع！＇8	s．eә人¢	900z－60		808080
．．\downarrow / ε	0T＇も	$\varepsilon \cdot 6 \tau$	て＇ST	060	59	$\varepsilon 乙$	8	00＇โt0＇0G9\＄	ع0＇t	sцıuow IT sıeəK ε	S00Z－0T		I6Z080
．．8／G	98＇t	$\varepsilon \varepsilon^{\prime} 8 \mathrm{~s}$	L9＇६s	0ヶT	0ε	0T	L	00＇09t＇9T6\＄	t0＇t	rea久 T	8002－60		乙てع0८0
и м моия 70 ¢	T0＇0	8t＇0	LT＇0	020	62	$\dagger \tau$	L	00＇T68＇S8L\＄	T0＇0T		900z－L0		008020
．．\downarrow / ε	0¢＇τ	†＇9	T＇ST	OSO	28	02	L	00＇Sto＇866＇t\＄	て＇દโ	sypuou s s．eəKt	¢00Z－ヶ0	gZ8 ${ }^{\text {K M }}$－ 62. KMH	†LZOLO
．．\downarrow / ε	0t＇τ	6．1T	S＇0T	OSO	28	02	L	00＇sto＇866＇t\＄	て＇દโ	sypuow s sıea ${ }_{\text {d }}$	sooz－to	gZ8 ${ }^{\text {KMH }}$－6L ${ }^{\circ}$ KMH	† LZOLO
．．\downarrow / ε	0ع＇ε	86	S＇9	OSO	28	02	L	00＇Sto＇866＇t\＄	て＇દโ		sooz－to	gZ8 ${ }^{\text {KMH }}$－6L ${ }^{\circ}$ KMH	ャLZOLO
．．も／\＆	08＇t	8 ＇t	0	OSO	28	02	L	00＇Sto＇866＇t\＄	て＇とโ	Şıuour s sıea ${ }_{\text {¢ }}$	S00z－ヤ0	9Z8 ${ }^{\prime}$ M ${ }^{\text {M }}$－6L＇KMH	† 2 zolo
．．\downarrow / ε	0で\＆	t＇ST	て＇Z	0ヶ0	28	$\dagger \tau$	L	00＇Sto＇866＇t\＄	て＇દป		S00Z－ヶ0	gZ8 ${ }^{\prime}$ M $\mathrm{MH}-6 L^{\prime}$ KMH	† LZOLO
．．\downarrow / ε	ZS＇t	ZS＇t	0	990	0LZ	92	9	St＇8SL＇t99\＄	ع＇t		S00Z－IT		โ\＆It90
पldəa	ч\％биәา	Wาpug	Wาธขอя	บо！̣วas	әұnoy	Kıunos	201145！0	1503	प6иә7 qoc 1ełol	ұиәшәлед ґо әб甘	$\begin{array}{\|c\|} \hline \text { рәtədwos } \\ \text { әғеа } \end{array}$	ข｜บ！	\＃900

